Further Reading and Resources:
- Laney, D.(2001) 3D Data Management: Controlling Data Volume, Velocity, and Variety. Meta Group.
- De Mauro, A., Greco, M. and Grimaldi, M. (2016) A formal definition of Big Data based on its essential features. Libr. Rev., 65, 122–135.
- Fang, H. (2015) Managing Data Lakes in Big Data Era: What’s a Data Lake and Why Has It Became Popular in Data Management Ecosystem.
- Marinescu, D.C. (2018) Cloud Computing: Theory and Practice.
- Haseeb, A. and Pattun, G. (2017) A review on NoSQL: applications and challenges.
- Sánchez, J.M. (2018) In-Memory Analytics. In Mehdi Khosrow-Pour, D.B.A. (ed.) Encyclopedia of Information Science and Technology (4th edn), pp. pp. 1806–1813. IGI Global.
Big Data
The government collects huge volumes of data (increasingly published as open data) and thus has major opportunities for so-called big data (analytics). In general, big data provides the opportunity of examining large and varied data sets to uncover hidden patterns, unknown correlations, customer preferences, etc. Big data encompass a mix of structured, semi-structured and unstructured data gathered formally through interactions with citizens, social media content, text from citizens’ emails and survey responses, phone call data and records, data captured by sensors connected to the Internet-of-things and so on. The notion of ‘big data’ is evolving; the variety of data being generated by organizations and the velocity at which that data is being created and updated; referred to as the 3Vs of big data. Alternative descriptions of big data add other features such as veracity, value, complexity and unstructuredness.
Big data encompasses a number of associated technologies:
Big data lakes—a ‘data lake’ is a storage repository that holds a vast amount of raw data in its native format until it is needed.
Cloud computing—the practice of using a network of remote servers hosted on the Internet to store, manage and process data, rather than a local server or a personal computer.
Unstructured data & NoSQL databases—refers to information that either does not have a pre-defined data model or is not organized in a pre-defined manner; a NoSQL database is a mechanism for storage and retrieval of data which is modelled in means other than the tabular relations used in relational databases.
Hadoop—an open source, Java-based programming framework that supports the processing and storage of extremely large data sets in a distributed computing environment.
In-memory analytics—the queries and data reside in the server’s random access memory (RAM), so increasing the speed, performance and reliability.
Related Papers and Publications
Algorithmic Government - The Computer Journal
Paper #02
Paper #03
Paper #03
Next GovTechLab Event
Latest News
Dr. Catherine Mulligan: UNESCO Humanistic AI Conference (Paris, March 2019)
Dr. Catherine Mulligan (CTO, GovTech Lab) blogs about chairing a panel at the UNESCO Humanistic AI Conference (Paris, March 2019). This week (4 March 2019) I attended and moderated a session at the UNESCO Humanistic AI conference that was held in Paris, on the first...
read moreConference Announcement: Data for Policy 2019 – June 10-12 (University College London)
The forthcoming Data for Policy Conference will be hosted at University College London, on the 10-12thJune (dataforpolicy.org). The conference series is led by GovTech Lab’s founder and principal investigator Dr Zeynep Engin, and this year will address two...
read moreGovTechLab Event 25th Jan 2019: Government Innovation
On the 25th of January (2019), a GovTechLab Knowledge Transfer Consortium event was held at UCL, which focused on the theme of ‘Government Innovation’. The event was chaired by Prof. Philip Treleaven (UCL), who started proceedings with an introduction to the event’s...
read more